当前位置:首页 > 创业科技 > 正文

使用深度神经 *** 整合药物与疾病关联数据进行药物再利用

药物再利用是指药物除原始和批准用途之外的新用途。近年来,与传统药物生产 *** 相比,药物再利用因其降低成本和低失败率而引起了大多数制药公司的关注。药物再利用有助于为已完成临床前安全性研究的疾病确定新的、低成本和短时间的治疗 *** 。

传统的治疗 *** 研发产生新的治疗方案需要近17年的时间,其成功率还不到10%。因此,迫切需要生产新的药物来治疗那些药物会给患者带来副作用的疾病。最近的研究报告显示,约有七千种罕见疾病尚无有效治疗 *** ,影响着全球 4 亿多人。

近年来,研究人员开展了药物再利用的研究。这些研究主要是对药物再利用 *** 及其成功案例的分析和描述。此类研究的主要挑战是在间接影响研究结果的数十万个额外基因中鉴定某种药物的真正靶分子。经典的统计模型和 *** 无法有效地在数千个基因中发现和区分某种药物的靶分子。

近年来,研究人员的努力转向了机器学习(ML)等预测模型,这些模型用于在药物生产过程中或在药物进入市场之前发现药物与疾病的关联。用于此目的的两种主要机器学习 *** 是基于 *** 的和基于相似性的。最近引入了基于 *** 的机器学习 *** 来预测药物与疾病的关联。因为它们能够提取和整合多种信息源的知识,例如化学、生物、靶标、基因组和药物来源。

为了提高药物与疾病关联的预测性能,大不里士大学的研究团队提出了一种利用分子特征以及与药物和疾病相关的多重相似性的计算 *** 。这种称为 IDDI-DNN(通过深度神经 *** 进行药物再利用的药物-疾病关联整合)的 *** 整合了药物和疾病之间的多种相似性,并利用深度神经 *** 来捕获它们之间的相似性。

图:IDDI-DNN *** 概述。(来源:论文)

该 *** 首先通过三个步骤将与药物、疾病以及药物与疾病关联相关的多个数据整合到一个独特的相似性矩阵中,然后使用构建的矩阵来训练卷积神经 *** (CNN)。

引入的模型 IDDN-DNN 集成了从药物和疾病的不同资源中提取的多个数据,以准确地重新调整药物用于疾病的用途。除了药物与疾病的关联信息外,这些数据还包括每种药物的化学结构、副作用和目标蛋白,以及每种疾病的人类表型和目标蛋白。该数据被集成到单个矩阵 F 中,并接受基于 CNN 的深度 *** 来训练模型。训练后,该模型用于重新调整药物治疗目标疾病的用途。

该模型用于建议针对目标疾病的合适药物。此外,还评估了该 *** 的稳健性和可靠性,并与之前引入的 *** 的性能进行了比较。IDDI-DNN 通过使用基准数据集在接收器操作特性 (ROC) 和精确召回 (PR) 性能指标方面优于多种更先进的 *** 。

预测新的药物与疾病之间的关联关系到已知关联关系的改善是最困难的挑战之一。IDDI-DNN已经证明了其优越性,在该领域取得了丰硕的成果。

论文链接:https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-023-05572-x