当前位置:首页 > 创业科技 > 正文

视觉Transformer中ReLU替代softmax,DeepMind新招让成本速降

Transformer 架构已经在现代机器学习领域得到了广泛的应用。注意力是 transformer 的一大核心组件,其中包含了一个 softmax,作用是产生 token 的一个概率分布。softmax 有较高的成本,因为其会执行指数计算和对序列长度求和,这会使得并行化难以执行。

Google DeepMind 想到了一个新思路:用某种不一定会输出概率分布的新 *** 替代 softmax 运算。他们还观察到:在用于视觉 Transformer 时,使用 ReLU 除以序列长度的注意力可以接近或匹敌传统的 softmax 注意力。

论文:https://arxiv.org/abs/2309.08586

这一结果为并行化带来了新方案,因为 ReLU 注意力可以在序列长度维度上并行化,其所需的 gather 运算少于传统的注意力。

***

注意力

注意力的作用是通过一个两步式流程对 d 维的查询、键和值 {q_i, k_i, v_i} 进行变换。

在之一步,通过下式得到注意力权重

其中 ϕ 通常是 softmax。

下一步,使用这个注意力权重来计算输出这篇论文探索了使用逐点式计算的方案来替代 ϕ。

ReLU 注意力

DeepMind 观察到,对于 1 式中的 ϕ = softmax,是一个较好的替代方案。他们将使用 的注意力称为 ReLU 注意力。

已扩展的逐点式注意力

研究者也通过实验探索了更广泛的 选择,其中 α ∈ [0, 1] 且 h ∈ {relu,relu² , gelu,softplus, identity,relu6,sigmoid}。

序列长度扩展

他们还观察到,如果使用一个涉及序列长度 L 的项进行扩展,有助于实现高准确度。之前试图去除 softmax 的研究工作并未使用这种扩展方案。

在目前使用 softmax 注意力设计的 Transformer 中,有 ,这意味着 尽管这不太可能是一个必要条件,但 能确保在初始化时 的复杂度是 ,保留此条件可能会减少替换 softmax 时对更改其它超参数的需求。

在初始化的时候,q 和 k 的元素为 O (1),因此 也将为 O (1)。ReLU 这样的激活函数维持在 O (1),因此需要因子才能使 的复杂度为

实验与结果

主要结果

图 1 说明在 ImageNet-21k 训练方面,ReLU 注意力与 softmax 注意力的扩展趋势相当。X 轴展示了实验所需的内核计算总时间(小时)。ReLU 注意力的一大优势是能在序列长度维度上实现并行化,其所需的 gather 操作比 softmax 注意力更少。

序列长度扩展的效果

图 2 对比了序列长度扩展 *** 与其它多种替代 softmax 的逐点式方案的结果。具体来说,就是用 relu、relu²、gelu、softplus、identity 等 *** 替代 softmax。X 轴是 α。Y 轴则是 S/32、S/16 和 S/8 视觉 Transformer 模型的准确度。更佳结果通常是在 α 接近 1 时得到。由于没有明确的更佳非线性,所以他们在主要实验中使用了 ReLU,因为它速度更快。

qk-layernorm 的效果

主要实验中使用了 qk-layernorm,在这其中查询和键会在计算注意力权重前被传递通过 LayerNorm。DeepMind 表示,默认使用 qk-layernorm 的原因是在扩展模型大小时有必要防止不稳定情况发生。图 3 展示了移除 qk-layernorm 的影响。这一结果表明 qk-layernorm 对这些模型的影响不大,但当模型规模变大时,情况可能会不一样。

添加门的效果

先前有移除 softmax 的研究采用了添加一个门控单元的做法,但这种 *** 无法随序列长度而扩展。具体来说,在门控注意力单元中,会有一个额外的投影产生输出,该输出是在输出投影之前通过逐元素的乘法组合得到的。图 4 探究了门的存在是否可消除对序列长度扩展的需求。总体而言,DeepMind 观察到,不管有没有门,通过序列长度扩展都可以得到更佳准确度。也要注意,对于使用 ReLU 的 S/8 模型,这种门控机制会将实验所需的核心时间增多大约 9.3%。